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High energy deuterons can be disintegrated by their impact with nuclei. For deuteron 
energies ^ 2 X 1 0 7 e.v., the corresponding neutron yield can be of the order of 1 percent. The 
probability of, the process can be calculated by taking advantage of the fact that the nuclear 
field varies little over the deuteron, and is then given quite simply in terms of the photoelectric 
absorption and the matrix elements of the nuclear field acting on the deuteron. For low energies 
the neutron yields are small, amounting to 3 X 10~9 for 3 X106 e.v. deuterons in Al, and to 10~6 

for 4X106 e.v. deuterons in carbon. 

A CCORDING to the experiments of Chad-
*• ^ wick and Goldhaber deuterons may be 
disintegrated by the gamma-rays of ThC". The 
threshold for this photoelectric effect corresponds 
to the mass defect / of the deuteron with respect 
to the proton and neutron into which it dis
integrates, and lies roughly at 2X106 e.v. 
Whenever deuterons of energy greater than this 
pass through matter, they may be disintegrated 
by their impact with atomic nuclei. It is this 
process which we wish to consider. 

When the minimum time of impact T is very 
short compared to the periods of the deuteron r, 
then we may determine the mean energy lost by 
the deuteron for its disintegration by applying 
the familiar method by which Bohr derived the 
atomic energy losses of fast particles. This gives 
for the energy loss per cm 

AE/ Ax=[^irZ2e^/{2M)v2~]NIn (r/T). (1)* 

Here N is the number of nuclei/cm3, Ze their 
charge, v the deuteron velocity and 2M the 
deuteron mass. Further 

T=Ze2/Mv\ r = h/Ik, (2) 

where k is a constant of order unity, which de
pends on the structure of the deuteron. The cross 
section for disintegration is thus in this limit 

<r = (2TZW/Mv2k1I)\; X = ln (Mv%/Ze2kl) (3) 

where ki is again of order unity, and k\I is the 
mean energy which the deuteron absorbs on 

* This is the mean energy transferred, by the impact of a 
nucleus of velocity n o n a deuteron initially at rest, to the 
relative motion of neutron and proton with respect to their 
center of mass; the mean work done on the proton is just 
twice this. 

disintegration. If we write1 for the energy loss 
to atomic electrons 
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then the yield of neutrons from a thick target, 
for an initial deuteron energy W, is 

Z(m/2M)(W/klI)L ( L ~ l ) (5) 

where L is the average over the energy range of 
the deuteron of the ratio X/A. For high energies 
(~3X10 7 e.v.) and large Z this gives yields of 
the order of 1 percent. It therefore seems of 
interest to investigate this process for lower 
energies, where the assumption T<^T can no 
longer be made. 

We can make this calculation very simply inso
far as we may neglect the variation of the field of 
the nucleus over the deuteron. This in turn will 
be permissible whenever the dimensions d of the 
deuteron are small compared to the distance of 
closest approach with the nucleus. Since d cannot 
be smaller than K/(MI)%, we must have 

h/(MI)*«Ze2/Mv2. (6) 

This condition does not contradict T<Cr when 

n = Ze2/hv^>l. (7) 

The condition (7) is well satisfied except for the 
lightest elements, for all deuteron energies which 
are likely to be available; and we shall assume the 
validity of (7) in the following work. 

1 F . Bloch, Zeits. f. Physik 81, 363 (1933). 
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Under these circumstances we can compute the 
field acting on the deuteron as though it were a 
point charge moving in the field of the nucleus; 
let us* call the matrix component of this field 
which corresponds to an energy loss of the 
deuteron =hv, S„. This field will disintegrate the 
deuteron; if ov be the cross section for photo-
effect, the cross section for impact disintegration 
will be 

%wih 

<rv\8>v\
2dv/v. (8) 

' i/h 

<r=(c/4wh) I 
J Tl 

Now Bethe and Peierls have given2 a theoret
ical calculation of cr„, which is based on the as
sumption that, the forces between proton and 
neutron act appreciably only over a region small 
compared to the size of the deuteron and the 
wavelength of the photoneutron: they find 

2h2 

3TMI (1+X)* 
x>0; x = hv/I-l. (9) 

Since when we insert this in (8) the integrand 
falls off fairly rapidly with v, we may use (9) 
even for frequencies higher than those for which 
its derivation is valid; for the true value of av will 
give an integrand in (8) which falls off still more 
rapidly. 

The matrix elements £„ are just 2M/e times 
the matrix elements of the acceleration of the 
deuteron; these are known3 from the theory of the 
continuous x-ray spectrum, and assume a rela
tively simple form when (7) is valid. We have to 
remember, however, that the deuteron and 
nucleus have like charges, whereas the calcula
tions on the continuous x-spectrum are made for 
two charges which attract each other. For our 
case we find 

16ir2z2e* ' 
[g 12 = exp \ —2wn 

3* v2 { 
( l + s ) J \ - * KO-^r-'K^ (10) 

2 H . Bethe and R. Peierls, Proc. Roy. Soc. A148, 146 
(1935). 

3 H . A. Kramers, Phil. Mag. 46, 836 (1923) and G. 
Wentzel, Zeits. f. Physik 27, 257 (1924) give the classical 
theory. Gaunt gives the quantum theoretic treatment, for 
unlike charges, for »^>1 : J. A. Gaunt, Zeits. f. Physik 59, 
508 (1930). For h-*0 the exponent in (10) goes to 
2v*(Ze*/Mv*)i>. 

The function g'(y) appears in the classical theory 
of the x-ray spectrum: 

g'b) = l*(WyHiy™(iy)Hiy™'(iy). (11) 

A rough plot of gf has been given4 by Kramers: 
for large yyg' = l; and g' does not deviate sensibly 
from this value except for very small values of yt 

where it is given by 

g'(y)->(3*A) In 2/yC, In C= 0.577. 

From (8), (9) and (10) we have 

<r=(16<irZ2e*/3(3)mv2I)<p(Z, W)y 

iWfl-l ^ f 
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Xg'(nI/2W)(l+x)). 

(12) 

The integral for <p(Z, W) may be evaluated for 
the limiting cases 2W%^' ^ u t e x c e P t m these 
cases can hardly be written in closed form. 

For irnl/W^l we find 

Z V /»/> -5 /2 

T(3)*MV2I\W/ 

exp 2 i m [ l - ( l - / / H 0 " 1 ] - (13) 

For nI/2W<£.l, on the other hand 

T Z2e* W 
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This is in fact of the form (3), with k = 1.51, ki = 6. 
If we take Z=13 , I=2X10 6 , TF=3X106, we 

may apply (13). This gives c ~ f X10~27 cm2, and 
with (4) gives a neutron yield of about 3X10""9. 
For Z - 6 , TF=4X106, (13) is inapplicable. Here 
(12) and (4) give a yield of about 10~6. The in
crease in yield with energy is very rapid. 

1 Kramers, reference 3, pp. 858-860. 


